
Discovery Webhooks

Overview
Webhooks allow you to build or set up applications which subscribe to new reports in your
Discovery account. When a new report was generated, we'll send a HTTP POST payload to the
webhook's configured URL. Webhooks can be used to update an external issue tracker, feed into a
SIEM, or even deploy a backup to your production server. You're only limited by your imagination.

Webhooks can be installed and configured exactly like your email or Slack notifiations. Once
installed, the webhook will be triggered each time a new report is generated.

Setting up a webhook
Creating a webhook is a two-step process. You'll first need to set up how you want your webhook to
behave through Discovery. After that, you'll set up your server to receive and manage the payload.

Setting up a webhook is similiar to setting up email or text notifications. Go to Settings >
Notifications and click on "Add Custom Webhook".

Settings > Notifications > Add WebhookImage not found or type unknown

Webhook URL: This is the server endpoint that will receive the webhook payload. This URL must
be accessible by the Discovery services, so make sure it is not a private URL like in the example
image, but publicly accessible.

We recommend that you protect the URL via HTTPS as well.

Payload
The second step to process webhooks is the server to handle the request. Discovery will send a 
POST  request to the specified webhook URL for each new report it generates.

https://discovery.nimbusec.com/settings
https://discovery.nimbusec.com/settings


The body of the request has always the content type  application/json  and the following format:

Securing your webhooks
Once your server is configured to receive payloads, it'll listen for any payload sent to the endpoint
you configured. For security reasons, you probably want to limit requests to those coming from
Discovery.

Discovery uses a hash signature to sign each webhook payload. This hash signature is passed
along with each request in the headers as  X-Nimbusec-Signature . Discovery uses PKCS 1 using
RSAwithSHA512 to calculate the signature, which is sent encoded as BASE64 in the headers value.

You can use the following example codes to validate the Discovery signature:

Using Java:

{
    "id": "string",
    "time": "int",
    "origin": "string",
    "summary": {
        "discovered": "int",
        "responding": "int",
        "scanned": "int",
        "malware": "int",
        "defacement": "int",
        "reputation": "int",
        "application": "int",
        "tls": "int"
    }
}

public boolean verifySignature(byte[] signature, byte[] data) {
    try {
        PKCS8EncodedKeySpec spec = new PKCS8EncodedKeySpec(Base64.decodeBase64(PRIVATE_KEY));
        PublicKey key = KeyFactory.getInstance("RSA").generatePublic(spec);

        Signature sig = Signature.getInstance("SHA512WithRSA");
        sig.initVerify(key);



Using Go:

The repository nimbusec-oss/nimbusec-gelf showcases how to verify Discovery webhook signatures
as well.

The public key used to verify all Discovery webhook signatures is:

        sig.update(data);

        return sig.verify(signature);
    } catch(InvalidKeySpecException | SignatureException | NoSuchAlgorithmException | InvalidKeyException ex) 
{
        return false;
    }
}

package example

import (
    "crypto"
    "crypto/rsa"
    "crypto/sha512"
)

func VerifySignature(signature []byte, data []byte) bool {
    // Example code to get the Discovery signature
    // header := request.Header.Get("X-Nimbusec-Signature")
    // signature, _ := base64.StdEncoding.DecodeString(header)

    // Example code to get the response body data
    // data, _ := ioutil.ReadAll(r.Body)

    hashed := sha512.Sum512(data)
    err := rsa.VerifyPKCS1v15(PublicKey, crypto.SHA512, hashed[:], signature)
    return err == nil
}

-----BEGIN PUBLIC KEY-----
MIICIjANBgkqhkiG9w0BAQEFAAOCAg8AMIICCgKCAgEAlgbfxMniLiDMRYhRYY0f
fOLEACXSCWmX0/rSL+qib/3cbZAMOEknXUudich4ZuCHulZ9ApaPx/7u+x5jQSj4
aiZXJE+S+LecUqwbq1CSfByLPViyYu2xt2I0tqYdsQK6KmQs2Gl00UP/yxrHtcEz

https://github.com/nimbusec-oss/nimbusec-gelf


NaZO8Z7bdL1AY3eW6oPjWeORK91FAEONbnCvXmPoGa/4+AUWr6FmMrjFiG8yM72K
eUvfzyWtZYNeFxJ+2UmqTco1oEdGmwJJYKgPAg4mRXOPBs1Il6W9+bwomUed/Rxd
GHuNPy4b9BOgSyFFoEHQJ2eL+W9IMpWegwV7VxXc37WlHQxoZ1886gO+u3hxvo++
+v0ami3JT1BZriTYdjSydktyUARQQzDaxAsYwUMTs/G++yiF3jt+J43pKvZ+ZSTP
+vXAKd+acbsUmH6WIxsu915BVPcnMgyeUWOK6NojiW4Z4BEuCWVKfqMKRU+LypFN
Hqpd3wxT26jnykJOm0a2xloXlmjS9x/LcHd6onN6I6wdPz8zSAU6lr0T2kWgPY+l
u0Ral9lpafe/Rq6GjPIvrlWNy2hjJhJ1FtzMCgySCs+XEqjFbM2GEOSK4M/NGY9+
zzkNgL4B0HpMHgRNeRfx0q+LuZtuHvNEDxmp/OvvfRqQGo5qqDhojm3rRi5qbsLa
k3siF46a7ml6ONtAD/Eib1kCAwEAAQ==
-----END PUBLIC KEY-----

Revision #1
Created 7 June 2023 09:43:08 by Lena
Updated 7 June 2023 09:43:47 by Lena


