
Integrations
Discovery Webhooks
Nimbusec Webhooks
Plesk - Nimbusec Webhosting Security

Discovery Webhooks

Overview
Webhooks allow you to build or set up applications which subscribe to new reports in your
Discovery account. When a new report was generated, we'll send a HTTP POST payload to the
webhook's configured URL. Webhooks can be used to update an external issue tracker, feed into a
SIEM, or even deploy a backup to your production server. You're only limited by your imagination.

Webhooks can be installed and configured exactly like your email or Slack notifiations. Once
installed, the webhook will be triggered each time a new report is generated.

Setting up a webhook
Creating a webhook is a two-step process. You'll first need to set up how you want your webhook to
behave through Discovery. After that, you'll set up your server to receive and manage the payload.

Setting up a webhook is similiar to setting up email or text notifications. Go to Settings >
Notifications and click on "Add Custom Webhook".

Settings > Notifications > Add WebhookImage not found or type unknown

Webhook URL: This is the server endpoint that will receive the webhook payload. This URL must
be accessible by the Discovery services, so make sure it is not a private URL like in the example
image, but publicly accessible.

We recommend that you protect the URL via HTTPS as well.

Payload
The second step to process webhooks is the server to handle the request. Discovery will send a
POST request to the specified webhook URL for each new report it generates.

https://discovery.nimbusec.com/settings
https://discovery.nimbusec.com/settings

The body of the request has always the content type application/json and the following format:

Securing your webhooks
Once your server is configured to receive payloads, it'll listen for any payload sent to the endpoint
you configured. For security reasons, you probably want to limit requests to those coming from
Discovery.

Discovery uses a hash signature to sign each webhook payload. This hash signature is passed
along with each request in the headers as X-Nimbusec-Signature . Discovery uses PKCS 1 using
RSAwithSHA512 to calculate the signature, which is sent encoded as BASE64 in the headers value.

You can use the following example codes to validate the Discovery signature:

Using Java:

{
 "id": "string",
 "time": "int",
 "origin": "string",
 "summary": {
 "discovered": "int",
 "responding": "int",
 "scanned": "int",
 "malware": "int",
 "defacement": "int",
 "reputation": "int",
 "application": "int",
 "tls": "int"
 }
}

public boolean verifySignature(byte[] signature, byte[] data) {
 try {
 PKCS8EncodedKeySpec spec = new PKCS8EncodedKeySpec(Base64.decodeBase64(PRIVATE_KEY));
 PublicKey key = KeyFactory.getInstance("RSA").generatePublic(spec);

 Signature sig = Signature.getInstance("SHA512WithRSA");
 sig.initVerify(key);

Using Go:

The repository nimbusec-oss/nimbusec-gelf showcases how to verify Discovery webhook signatures
as well.

The public key used to verify all Discovery webhook signatures is:

 sig.update(data);

 return sig.verify(signature);
 } catch(InvalidKeySpecException | SignatureException | NoSuchAlgorithmException | InvalidKeyException ex)
{
 return false;
 }
}

package example

import (
 "crypto"
 "crypto/rsa"
 "crypto/sha512"
)

func VerifySignature(signature []byte, data []byte) bool {
 // Example code to get the Discovery signature
 // header := request.Header.Get("X-Nimbusec-Signature")
 // signature, _ := base64.StdEncoding.DecodeString(header)

 // Example code to get the response body data
 // data, _ := ioutil.ReadAll(r.Body)

 hashed := sha512.Sum512(data)
 err := rsa.VerifyPKCS1v15(PublicKey, crypto.SHA512, hashed[:], signature)
 return err == nil
}

-----BEGIN PUBLIC KEY-----
MIICIjANBgkqhkiG9w0BAQEFAAOCAg8AMIICCgKCAgEAlgbfxMniLiDMRYhRYY0f
fOLEACXSCWmX0/rSL+qib/3cbZAMOEknXUudich4ZuCHulZ9ApaPx/7u+x5jQSj4
aiZXJE+S+LecUqwbq1CSfByLPViyYu2xt2I0tqYdsQK6KmQs2Gl00UP/yxrHtcEz

https://github.com/nimbusec-oss/nimbusec-gelf

NaZO8Z7bdL1AY3eW6oPjWeORK91FAEONbnCvXmPoGa/4+AUWr6FmMrjFiG8yM72K
eUvfzyWtZYNeFxJ+2UmqTco1oEdGmwJJYKgPAg4mRXOPBs1Il6W9+bwomUed/Rxd
GHuNPy4b9BOgSyFFoEHQJ2eL+W9IMpWegwV7VxXc37WlHQxoZ1886gO+u3hxvo++
+v0ami3JT1BZriTYdjSydktyUARQQzDaxAsYwUMTs/G++yiF3jt+J43pKvZ+ZSTP
+vXAKd+acbsUmH6WIxsu915BVPcnMgyeUWOK6NojiW4Z4BEuCWVKfqMKRU+LypFN
Hqpd3wxT26jnykJOm0a2xloXlmjS9x/LcHd6onN6I6wdPz8zSAU6lr0T2kWgPY+l
u0Ral9lpafe/Rq6GjPIvrlWNy2hjJhJ1FtzMCgySCs+XEqjFbM2GEOSK4M/NGY9+
zzkNgL4B0HpMHgRNeRfx0q+LuZtuHvNEDxmp/OvvfRqQGo5qqDhojm3rRi5qbsLa
k3siF46a7ml6ONtAD/Eib1kCAwEAAQ==
-----END PUBLIC KEY-----

Nimbusec Webhooks
Overview
Webhooks allow you to build or set up applications which subscribe to certain alerts in your
Nimbusec account. When one of those alerts is triggered, we'll send a HTTP POST payload to the
webhook's configured URL. Webhooks can be used to update an external issue tracker, feed into a
SIEM, or even deploy a backup to your production server. You're only limited by your imagination.

Webhooks can be installed and configured exactly like your email and text notifiations. Once
installed, the webhook will be triggered each time one or more subscribed alerts occur.

Setting up a webhook
Creating a webhook is a two-step process. You'll first need to set up how you want your webhook to
behave through Nimbusec--what alerts it should listen to. After that, you'll set up your server to
receive and manage the payload.

Setting up a webhook is similiar to setting up email or text notifications. Go to Settings >
Notifications and click on "Add Webhook".

Settings > Notifications > Add WebhookImage not found or type unknown

Webhooks require a few configuration options before you can make use of them. We'll go through
each of these settings below.

Add Webhook DialogImage not found or type unknown

Webhook URL: This is the server endpoint that will receive the webhook payload. This URL must
be accessible by the Nimbusec services, so make sure it is not a private URL like in the example
image, but publicly accessible.

We recommend that you protect the URL via HTTPS as well.

Domains: Your webhook will only receive alerts for domains that you select. Select the domains
you want to receive alert for in "Available Domains" and you the arrow buttons to move then to
"Domains with notifications".

https://portal.nimbusec.com/einstellungen/benachrichtigung
https://portal.nimbusec.com/einstellungen/benachrichtigung

Notification levels: The webhook receives alerts for each new issue Nimbusec detecs (just like
email and text notifications). Nimbusec issues are either rated as "medium risk" or "severe risk".
You can select with the dropdowns in which alerts you are interested.

Payload
The second step to process webhooks is the server to handle the request. Nimbusec will send a
POST request to the specified webhook URL for each new alert it detects.

The body of the request has always the content type application/json and the following format:

A sample application to receive webhooks can be found in our GitHub repository nimbusec-
oss/nimbusec-gelf. This small example implementation receives any Nimbusec alerts and converts
them to a GELF message that can be pushed to any GELF processing server like Graylog. It is used
internally at nimbusec to feed our own alerts into our SIEM.

{
 "domain": {
 "id": "string",
 "name": "string",
 "url": "string",
 "responseIP": "string",
 },
 "issues": [
 {
 "id": "string",
 "event": "string",
 "category": "string",
 "severity": "int",
 "regions": ["string"],
 "viewports": ["string"],
 "details": { /* ... */ }
 },
 // ...
]
}

https://github.com/nimbusec-oss/nimbusec-gelf
https://github.com/nimbusec-oss/nimbusec-gelf

Securing your webhooks
Once your server is configured to receive payloads, it'll listen for any payload sent to the endpoint
you configured. For security reasons, you probably want to limit requests to those coming from
Nimbusec.

Nimbusec uses a hash signature to sign each webhook payload. This hash signature is passed
along with each request in the headers as X-Nimbusec-Signature . Nimbusec uses PKCS 1 using
RSAwithSHA512 to calculate the signature, which is sent encoded as BASE64 in the headers value.

You can use the following example codes to validate the Nimbusec signature:

Using Java:

Using Go:

public boolean verifySignature(byte[] signature, byte[] data) {
 try {
 PKCS8EncodedKeySpec spec = new PKCS8EncodedKeySpec(Base64.decodeBase64(PRIVATE_KEY));
 PublicKey key = KeyFactory.getInstance("RSA").generatePublic(spec);

 Signature sig = Signature.getInstance("SHA512WithRSA");
 sig.initVerify(key);
 sig.update(data);

 return sig.verify(signature);
 } catch(InvalidKeySpecException | SignatureException | NoSuchAlgorithmException | InvalidKeyException ex)
{
 return false;
 }
}

package example

import (
 "crypto"
 "crypto/rsa"
 "crypto/sha512"
)

The repository nimbusec-oss/nimbusec-gelf showcases how to verify Nimbusec webhook signatures
as well.

The public key used to verify all Nimbusec webhook signatures is:

func VerifySignature(signature []byte, data []byte) bool {
 // Example code to get the Nimbusec signature
 // header := request.Header.Get("X-Nimbusec-Signature")
 // signature, _ := base64.StdEncoding.DecodeString(header)

 // Example code to get the response body data
 // data, _ := ioutil.ReadAll(r.Body)

 hashed := sha512.Sum512(data)
 err := rsa.VerifyPKCS1v15(PublicKey, crypto.SHA512, hashed[:], signature)
 return err == nil
}

-----BEGIN PUBLIC KEY-----
MIICIjANBgkqhkiG9w0BAQEFAAOCAg8AMIICCgKCAgEAlgbfxMniLiDMRYhRYY0f
fOLEACXSCWmX0/rSL+qib/3cbZAMOEknXUudich4ZuCHulZ9ApaPx/7u+x5jQSj4
aiZXJE+S+LecUqwbq1CSfByLPViyYu2xt2I0tqYdsQK6KmQs2Gl00UP/yxrHtcEz
NaZO8Z7bdL1AY3eW6oPjWeORK91FAEONbnCvXmPoGa/4+AUWr6FmMrjFiG8yM72K
eUvfzyWtZYNeFxJ+2UmqTco1oEdGmwJJYKgPAg4mRXOPBs1Il6W9+bwomUed/Rxd
GHuNPy4b9BOgSyFFoEHQJ2eL+W9IMpWegwV7VxXc37WlHQxoZ1886gO+u3hxvo++
+v0ami3JT1BZriTYdjSydktyUARQQzDaxAsYwUMTs/G++yiF3jt+J43pKvZ+ZSTP
+vXAKd+acbsUmH6WIxsu915BVPcnMgyeUWOK6NojiW4Z4BEuCWVKfqMKRU+LypFN
Hqpd3wxT26jnykJOm0a2xloXlmjS9x/LcHd6onN6I6wdPz8zSAU6lr0T2kWgPY+l
u0Ral9lpafe/Rq6GjPIvrlWNy2hjJhJ1FtzMCgySCs+XEqjFbM2GEOSK4M/NGY9+
zzkNgL4B0HpMHgRNeRfx0q+LuZtuHvNEDxmp/OvvfRqQGo5qqDhojm3rRi5qbsLa
k3siF46a7ml6ONtAD/Eib1kCAwEAAQ==
-----END PUBLIC KEY-----

https://github.com/nimbusec-oss/nimbusec-gelf

Plesk - Nimbusec
Webhosting Security
This how-to guide describes the usage of the Nimbusec Webhosting Security Plugin for Plesk.

Installation & Uninstallation
There are two ways on how the manage the installation and uninstallation of the Plesk plugin.

Manage through Plesk extension store
For installation, please refer to the official Plesk plugin / extension store where the plugin is
categorized under Security for easier search. To uninstall the plugin, click on the plugin and select
the option uninstall .

Manage via Command-Line
This approach is not adviced for regular non-technical customers and should only be used under
consideration of the risks. In order to manage the plugin via the Plesk command line, please refer
to the detailed instruction page on the official Github repository: https://github.com/nimbusec-
oss/nimbusec-plesk.

Usage
Setup
After successfully installing the Nimbusec Plesk Extension, an initial licence screen is presented as
below.

Licence ScreenImage not found or type unknown

https://github.com/nimbusec-oss/nimbusec-plesk
https://github.com/nimbusec-oss/nimbusec-plesk

In order to gain access to the plugin, one must select either of two options and obtain the
necessary permissions correspondingly.

Get a Licence
A licence containing the required permissions alongs with valid access credentials can be
purchased through the official Plesk extensions store: https://www.plesk.com/extensions/nimbusec-
agent-integration/. After receiving the licence, the correct option in the licence screen must be
selected to active the extension and download the Nimbusec Agent.

Enter API credentials
Please enter your API Key and Secret and click on "Download Server Agent" to intiate the
activation. If you don't have API credentials yet, get in contact with plesk@nimbusec.com or issue a
support ticket on the official website nimbusec.com for purchase or trial subscriptions.

Settings
The settings screens allow for various configuations the extension:

Register and unregister Plesk domains in the Nimbusec Portal
View the Nimbusec Agent Configuration
Configure schedule and advanced options for the Nimbusec Agent
Activate the Nimbusec Agent

Register and unregister Plesk domains
Domains SettingsImage not found or type unknown

The register view shows all domains which are available within your Plesk installation. In order to
allow the Nimbusec Agent to scan your domains you must first register them with a plan (e.g link
them). To conduct this, select one or more domain you want to register, select the wished plan and
click on "Register the selected domains".

The domains will be registered and are moved below the correct plan. From there it is possible to
unregister the domains.

In the unregister view you see all domains which are already registered with Nimbusec and
grouped by their corresponding plan. In case you want the Nimbusec Agent to stop scanning your
domains, select the domains you wish to unregister and click on "Unregister the selected domains".

View the Nimbusec Agent Configuration

https://www.plesk.com/extensions/nimbusec-agent-integration/
https://www.plesk.com/extensions/nimbusec-agent-integration/
mailto:plesk@nimbusec.com

The Agent Congfiguration view shows you the current configuration file which is used by the
Nimbusec Agent every time it starts scanning. This will give you the possibility of verifying the
Agent's functionality. For more information about the agent configuration file, please refer to:
https://kb.nimbusec.com/Server Agent/agent-configuration.

Agent SettingsImage not found or type unknown

Set Run Settings for the Nimbusec Agent
In order to start the Nimbusec Agent's scanning process, it must be activated. This can be done
by checking the "Status" checkbox and clicking on "Save settings" afterwards.

Additionally, the Nimbusec Agent must be set to a specific schedule interval. This means basically
how often the Nimbusec Agent should scan every day. For that you can choose between one, two,
three or four times a day. Again, save the settings afterwards by clicking the "Save settings"
button.

Update Agent
This screen gives you an overview about your current Nimbusec Agent installation. The extension
will check for an updated version in the background and will show a green/success or
yellow/warning message on top of the page in case of an available update. Please check back to
this page from time to time.

Dashboard
The Dashboard is very new and shows the issues found on your monitored websites. From there
you have the option to

view the possible malicious files,
move them to quarantine
remove from quarantine back to their origin

this is much likely the case, if a file was moved that is crucial for the website to run

DashboardImage not found or type unknown

License Key for Support
Sometimes you'll want to ask our support team questions about your Plesk installation. In that case
it helps if you also provide the License Key / Subscription ID to us. Because of the General Data
Privacy Regulations (GDPR) we do not get any personal / contact data from Plesk, and every entry

https://kb.nimbusec.com/Server%20Agent/agent-configuration

is pseudonymisied. Only the subscription ID is provided which we use for invoicing Plesk and also
provide support if needed.

So here's how to get this information:

Login to Plesk as admin
Go to: Tool&Settings > License Management > Additional license key
Find by “Key name” needed license
Copy the content of column “Key number” for this license

